If it's not what You are looking for type in the equation solver your own equation and let us solve it.
x^2-45x+300=0
a = 1; b = -45; c = +300;
Δ = b2-4ac
Δ = -452-4·1·300
Δ = 825
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{825}=\sqrt{25*33}=\sqrt{25}*\sqrt{33}=5\sqrt{33}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-45)-5\sqrt{33}}{2*1}=\frac{45-5\sqrt{33}}{2} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-45)+5\sqrt{33}}{2*1}=\frac{45+5\sqrt{33}}{2} $
| ( | | ( | | 6a-7=2a+3 | | 1/15x+3/20=1/5x-7/60 | | 8x-4=6+2x | | Z=5+-1x | | -24=3(u+2)-8u | | -24=3u+6-8u | | 7^x=44 | | w-3.67=2.4 | | X+3/2+3=5(x-3)+x+23/5 | | 5-3(4x-6)=-4 | | 5-12x-6=-4 | | 8=3a+12=2a | | 8=3a+12 | | 8y+6=5y+3 | | 5x-0.7=2.5 | | f/G=24+3F | | 4=6+1/2x | | -2/5(x+10=3/5x | | (8x+12)°+(15x+7)°x=180 | | Y=6+1/2x | | 2-2y+6=0 | | 3x^2+0.12x-0.0036=0 | | .25(8w-4^2)=0 | | 2x+60+3x)20=180 | | x+14+31-2x+40x-21=180 | | 3(m–6)=6 | | 3(m–6)=6 | | 151−5n=4n−18+n+9 | | P(x)=3x-1 | | (X)+(x+15)=95 |